Login / Signup

Long-Lived C60 Radical Anion Stabilized Inside an Electron-Deficient Coordination Cage.

Shota HasegawaShari L MeichsnerJulian J HolsteinAnanya BaksiMüge KasanmascheffGuido H Clever
Published in: Journal of the American Chemical Society (2021)
Fullerene C60 and its derivatives are widely used in molecular electronics, photovoltaics, and battery materials, because of their exceptional suitability as electron acceptors. In this context, single-electron transfer on C60 generates the C60• - radical anion. However, the short lifetime of free C60• - hampers its investigation and application. In this work, we dramatically stabilize the usually short-lived C60• - species within a self-assembled M2L4 coordination cage consisting of a triptycene-based ligand and Pd(II) cations. The electron-deficient cage strongly binds C60 by providing a curved inner π-surface complementary to the fullerene's globular shape. Cyclic voltammetry revealed a positive potential shift for the first reduction of encapsulated C60, which is indicative of a strong interaction between confined C60• - and the cationic cage. Photochemical one-electron reduction with 1-benzyl-1,4-dihydronicotinamide allows selective and quantitative conversion of the confined C60 molecule in millimolar acetonitrile solution at room temperature. Radical generation was confirmed by nuclear magnetic resonance, electron paramagnetic resonance, ultraviolet-visible-near-infrared spectroscopy and electrospray ionization mass spectrometry. The lifetime of C60• - within the cage was determined to be so large that it could still be detected after one month under an inert atmosphere.
Keyphrases