Login / Signup

A discrete convolution kernel for No-DC MRI.

Gengsheng L ZengYa Li
Published in: Inverse problems (2015)
An analytical inversion formula for the exponential Radon transform with an imaginary attenuation coefficient was developed in 2007 (2007 Inverse Problems 23 1963-71). The inversion formula in that paper suggested that it is possible to obtain an exact MRI (magnetic resonance imaging) image without acquiring low-frequency data. However, this un-measured low-frequency region (ULFR) in the k-space (which is the two-dimensional Fourier transform space in MRI terminology) must be very small. This current paper derives a FBP (filtered back-projection) algorithm based on You's formula by suggesting a practical discrete convolution kernel. A point spread function is derived for this FBP algorithm. It is demonstrated that the derived FBP algorithm can have a larger ULFR than that in the 2007 paper. The significance of this paper is that we present a closed-form reconstruction algorithm for a special case of under-sampled MRI data. Usually, under-sampled MRI data requires iterative (instead of analytical) algorithms with L1-norm or total variation norm to reconstruct the image.
Keyphrases