Login / Signup

Radio frequency electromagnetic radiations interfere with the Leydig cell functions in-vitro.

Pooja JangidUmesh RaiRajeev Singh
Published in: PloS one (2024)
A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner. TM3 cells were exposed to RFR emitted from 4G cell phone and also exposed to a particular frequency of 1800 MHz and 2450 MHz from RFR exposure system. The cells were then evaluated for different parameters such as cell viability, cell proliferation, testosterone production, and ROS generation. A considerable reduction in the testosterone levels and proliferation rate of TM3 cells were observed at 120 min of exposure as compared to the control group in all exposure settings. Conversely, the intracellular ROS levels showed a significant rise at 60, 90 and 120 min of exposure in both mobile phone and 2450 MHz exposure groups. However, RFR treatment for different time durations (15, 30, 45, 60, 90, and 120 min) did not have significant effect on cell viability at any of the exposure condition (2450 MHz, 1800 MHz, and mobile phone radiation). Therefore, our findings concluded with the negative impact of radiofrequency electromagnetic radiations on Leydig cell's physiological functions, which could be a serious concern for male infertility. However, additional studies are required to determine the specific mechanism of RFR action as well as its long-term consequences.
Keyphrases