Login / Signup

Microfluidic Acoustic Method for High Yield Extraction of Cell-Free DNA in Low-Volume Plasma Samples.

Alvaro J CondeIeva KeraiteNicholas R LeslieMaïwenn Kersaudy-Kerhoas
Published in: Methods in molecular biology (Clifton, N.J.) (2023)
Cell-free DNA has many applications in clinical medicine, in particular in cancer diagnosis and cancer treatment monitoring. Microfluidic-based solutions could provide solutions for rapid, cheaper, decentralized detection of cell-free tumoral DNA from a simple blood draw, or liquid biopsies, replacing invasive procedures or expensive scans. In this method, we present a simple microfluidic system for the extraction of cell-free DNA from low volume of plasma samples (≤500 μL). The technique is suitable for either static or continuous flow systems and can be used as a stand-alone module or integrated within a lab-on-chip system. The system relies on a simple yet highly versatile bubble-based micromixer module whose custom components can be fabricated with a combination of low-cost rapid prototyping techniques or ordered via widely available 3D-printing services. This system is capable of performing cell-free DNA extractions from small volumes of blood plasma with up to a tenfold increase in capture efficiency when compared to control methods.
Keyphrases