Login / Signup

Stable Potassium Metal Anodes with an All-Aluminum Current Collector through Improved Electrolyte Wetting.

Pengcheng LiuYixian WangHongchang HaoSwastik BasuXuyong FengYixin XuJorge Anibal BoscoboinikJagjit NandaJohn WattDavid Mitlin
Published in: Advanced materials (Deerfield Beach, Fla.) (2020)
This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil "Al@Al," without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.5 mA cm-2 , with 98.9% cycling Coulombic efficiency and 0.085 V overpotential. The pre-potassiated cell is stable through a wide current range, including 130 cycles (2600 min) at 3.0 mA cm-2 , with 0.178 V overpotential. Al@Al is fully wetted by a 4 m potassium bis(fluorosulfonyl)imide-dimethoxyethane electrolyte (θCA  = 0°), producing a uniform solid electrolyte interphase (SEI) during the initial galvanostatic formation cycles. On planar aluminum foil with a nearly identical surface oxide, the electrolyte wets poorly (θCA  = 52°). This correlates with coarse irregular SEI clumps at formation, 3D potassium islands with further SEI coarsening during plating/stripping, possibly dead potassium metal on stripped surfaces, and rapid failure. The electrochemical stability of Al@Al versus planar Al is not related to differences in potassiophilicity (nearly identical) as obtained from thermal wetting experiments. Planar Cu foils are also poorly electrolyte-wetted and become dendritic. The key fundamental takeaway is that the incomplete electrolyte wetting of collectors results in early onset of SEI instability and dendrites.
Keyphrases