White Blood Cell Classification Using Texture and RGB Features of Oversampled Microscopic Images.
Furqan RustamNaila AslamIsabel de la Torre DíezYaser Daanial KhanJuan Luis Vidal MazónCarmen Lili RodríguezImran AshrafPublished in: Healthcare (Basel, Switzerland) (2022)
White blood cell (WBC) type classification is a task of significant importance for diagnosis using microscopic images of WBC, which develop immunity to fight against infections and foreign substances. WBCs consist of different types, and abnormalities in a type of WBC may potentially represent a disease such as leukemia. Existing studies are limited by low accuracy and overrated performance, often caused by model overfit due to an imbalanced dataset. Additionally, many studies consider a lower number of WBC types, and the accuracy is exaggerated. This study presents a hybrid feature set of selective features and synthetic minority oversampling technique-based resampling to mitigate the influence of the above-mentioned problems. Furthermore, machine learning models are adopted for being less computationally complex, requiring less data for training, and providing robust results. Experiments are performed using both machine- and deep learning models for performance comparison using the original dataset, augmented dataset, and oversampled dataset to analyze the performances of the models. The results suggest that a hybrid feature set of both texture and RGB features from microscopic images, selected using Chi2, produces a high accuracy of 0.97 with random forest. Performance appraisal using k-fold cross-validation and comparison with existing state-of-the-art studies shows that the proposed approach outperforms existing studies regarding the obtained accuracy and computational complexity.
Keyphrases
- deep learning
- machine learning
- convolutional neural network
- artificial intelligence
- case control
- single cell
- big data
- mental health
- cell therapy
- bone marrow
- acute myeloid leukemia
- electronic health record
- drinking water
- optical coherence tomography
- magnetic resonance imaging
- computed tomography
- data analysis
- virtual reality
- clinical evaluation