In Silico Optimized Stapled Peptides Targeting WASF3 in Breast Cancer.
Ameya J LimayeGeorge N BendzunasMatthew K WhittakerTimothy J LeClairLeah G HeltonEileen J KennedyPublished in: ACS medicinal chemistry letters (2022)
Wiskott-Aldrich Syndrome Protein Family (WASF) members regulate actin cytoskeletal dynamics, and WASF3 is directly associated with breast cancer metastasis and invasion. WASF3 forms a heteropentameric complex with CYFIP, NCKAP, ABI, and BRK1, called the WASF Regulatory Complex (WRC), which cooperatively regulates actin nucleation by WASF3. Since aberrant deployment of the WRC is observed in cancer metastasis and invasion, its disruption provides a novel avenue for targeting motility in breast cancer cells. Here, we report the development of a second generation WASF3 mimetic peptide, WAHMIS-2, which was designed using a combination of structure-guided design, homology modeling, and in silico optimization to disrupt binding of WASF3 to the WRC. WAHMIS-2 was found to permeate cells and inhibit cell motility, invasion, and MMP9 expression with greater potency than its predecessor, WAHM1. Targeted disruption of WASF3 from the WRC may serve as a useful strategy for suppression of breast cancer metastasis.