Login / Signup

Facile Preparation of Delivery Platform of Water-Soluble Low-Molecular-Weight Drugs Based on Polyion Complex Vesicle (PICsome) Encapsulating Mesoporous Silica Nanoparticle.

Akinori GotoHung-Chi YenYasutaka AnrakuShigeto FukushimaPing-Shan LaiMasaru KatoAkihiro KishimuraKazunori Kataoka
Published in: ACS biomaterials science & engineering (2017)
Polyion complex vesicles (PICsomes) are polymeric hollow capsules composed of a unique semipermeable membrane, which may represent a versatile platform for constructing drug-loaded nanoformulation. However, it is difficult to retain water-soluble low-molecular-weight compounds (LMWCs) in the inner space of PICsome because of the high permeability of PIC membrane for LMWCs. Herein, we selected mesoporous silica nanoparticle (MSN) as a drug-retaining nanomatrix, and we demonstrated successful encapsulation of MSN into the PICsome to obtain MSN@PICsome. The efficacy of MSN loading, a ratio of the amount of MSN encapsulated in the PICsome to the amount of feed MSN, was at most 83%, and the diameter of resulting product was approximately 100 nm. The obtained MSN@PICsome was stably dispersed under the physiological condition, and showed considerable longevity in blood circulation of mice. Furthermore, the surface of MSN in MSN@PICsome can be modified without any deterioration of the vesicle structure, obtaining amino-functionalized and sulfonate-functionalized MSN@PICsomes (A-MSN@PICsome and S-MSN@PICsome, respectively). Both surface-modified MSN@PICsomes were successfully loaded with charged water-soluble low-molecular-weight compounds (LMWCs). Particularly, S-MSN@PICsome kept 8 wt % gemcitabine (GEM) per S-MSN, and released it in a sustained manner. GEM-loaded S-MSN@PICsome demonstrated marked cytotoxicity against cultured tumor cells, and achieved significant in vivo efficacy to suppress the growth of subcutaneously implanted lung tumor via intravenous administration.
Keyphrases