A Score to Predict the Clinical Usefulness of Therapeutic Drug Monitoring: Application to Oral Molecular Targeted Therapies in Cancer.
Arthur GeraudDavid CombarelChristian Funck-BrentanoQuentin BeaulieuNoël ZahrSophie BroutinJean-Philippe SpanoChristophe MassardBenjamin BessePaul GougisPublished in: Clinical pharmacology and therapeutics (2024)
Therapeutic drug monitoring (TDM) involves measuring and interpreting drug concentrations in biological fluids to adjust drug dosages. In onco-hematology, TDM guidelines for oral molecular targeted therapies (oMTTs) are varied. This study evaluates a quantitative approach with a score to predict the clinical usefulness of TDM for oMTTs. We identified key parameters for an oMTT's suitability for TDM from standard TDM recommendations. We gathered oMTT pharmacological data, which covered exposure variability (considering pharmacokinetic (PK) impact of food and proton pump inhibitors), technical intricacy (PK linearity and active metabolites), efficacy (exposure-response relationship), and safety (maximum tolerated dose, and exposure-safety relationship). To assess the validity and the relevance of the score and define relevant thresholds, we evaluated molecules with prospective validation or strong recommendations for TDM, both in oncology and in other fields. By September 1, 2021, the US Food and Drug Administration (FDA) approved 67 oMTTs for onco-hematological indications. Scores ranged from 15 (acalabrutinib) to 80 (sunitinib) with an average of 48.3 and a standard deviation of 15.6. Top scorers included sunitinib, sorafenib, cabozantinib, nilotinib, and abemaciclib. Based on scores, drugs were categorized into low (< 40), intermediate (≥ 40 and < 60), and high (≥ 60) relevance for TDM. Notably, negative controls generally scored around or under 40, whereas positive controls had a high score across different indications. In this work, we propose a quantitative and reproducible score to compare the potential usefulness of TDM for oMTTs. Future guidelines should prioritize the TDM for molecules with the highest score.