Login / Signup

A neutral porous organic polymer host for the recognition of anionic dyes in water.

Whitney S Y OngRonald A SmaldoneSheel C Dodani
Published in: Chemical science (2020)
Neutral hosts for the recognition of anionic guests in water remain underdeveloped due to the inherent thermodynamic barrier for desolvation. To address this challenge, we have repurposed crosslinked porous organic polymers (POPs) as hosts. This polymer architecture affords a hydrophobic environment with a densely packed array of urea hydrogen bond donors to cooperatively promote anion desolvation and recognition in water. Using the principles of supramolecular design, we demonstrate through adsorption assays that the resulting Urea-POP-1 can recognize structurally different dyes containing phosphonate, sulfonate, and carboxylate anions in water. Moreover, when compared to Methyl-POP-1, a control POP lacking hydrogen bond donors, we find that the driving force for desolvation and adsorption of each dye is achieved through hydrophobic interactions with the POP backbone and, more importantly, cooperative hydrogen bonding interactions with the urea sidechains. This starting point sets the stage to exploit the modularity of our design to build a family of neutral polymer hosts with tunable pore sizes and anion preferences for fundamental investigations and targeted applications.
Keyphrases
  • aqueous solution
  • ionic liquid
  • high throughput
  • water soluble
  • drug delivery
  • high resolution
  • cancer therapy
  • kidney transplantation
  • metal organic framework
  • visible light