Login / Signup

Classification of salivary bacteriome in asymptomatic COVID-19 cases based on long-read nanopore sequencing.

Rungrat JitvaropasOraphan MayuramartVorthon SawaswongPornchai KaewsapsakSunchai Payungporn
Published in: Experimental biology and medicine (Maywood, N.J.) (2022)
The coronavirus (COVID-19) global pandemic has impacted the health of almost everyone, including changes in their salivary microbiota. Since 2019, there has been an increase in the number of new COVID-19 cases in Thailand. Therefore, COVID-19 active case finding is important for early detection and epidemic control. Moreover, the dynamic changes of salivary bacteriome in asymptomatic COVID-19 cases are largely unknown. This research aimed to investigate and compare the salivary bacteriome and the co-infectious bacterial pathogens in the asymptomatic COVID-19 positive group to the negative group, based on novel nanopore sequencing. This cohort was a cross-sectional study including saliva samples collected from 82 asymptomatic participants (39 COVID-19 positive and 43 COVID-19 negative cases). All samples were sequenced for the full-length bacterial 16S rDNA. The alpha and beta diversity analyses were not significantly different between groups. The three major species in salivary bacteriome including Veillonella parvula , Streptococcus mitis , and Prevotella melaninogenica were observed in both groups. Interestingly, Lautropia mirabilis was a significantly enriched species in the saliva of the asymptomatic COVID-19-positive cases based on linear discriminant analysis effect size (LEfSe) analysis. The results suggested that L. mirabilis was a co-infectious agent in the asymptomatic COVID-19 group. However, the potential role of L. mirabilis should be validated in further experimental studies.
Keyphrases