Login / Signup

Water Metabolism of Lonicera japonica and Parthenocissus quinquefolia in Response to Heterogeneous Simulated Rock Outcrop Habitats.

Xiaopan ZhaoYanyou WuDeke XingHaitao LiFurong Zhang
Published in: Plants (Basel, Switzerland) (2023)
The karst carbon sink caused by rock outcrops results in enrichment of the bicarbonate in soil, affecting the physiological process of plants in an all-round way. Water is the basis of plant growth and metabolic activities. In heterogeneous rock outcrop habitats, the impact of bicarbonate enrichment on the intracellular water metabolism of plant leaf is still unclear, which needs to be revealed. In this paper, the Lonicera japonica and Parthenocissus quinquefolia plants were selected as experimental materials, and electrophysiological indices were used to study their water holding, transfer and use efficiency under three simulated rock outcrop habitats, i.e., rock/soil ratio as 1, 1/4 and 0. By synchronously determining and analyzing the leaf water content, photosynthetic and chlorophyll fluorescence parameters, the response characteristics of water metabolism within leaf cells to the heterogeneous rock outcrop habitats were revealed. The results showed that the soil bicarbonate content in rock outcrop habitats increased with increasing rock/soil ratio. Under the treatment of a higher concentration of bicarbonate, the leaf intra- and intercellular water acquisition and transfer efficiency as well as the photosynthetic utilization capacity of P. quinquefolia decreased, the leaf water content was lower, and those plants had low bicarbonate utilization efficiency, which greatly weakened their drought resistance. However, the Lonicera japonica had a high bicarbonate use capacity when facing the enrichment of bicarbonate within cells, the above-mentioned capacity could significantly improve the water status of the leaves, and the water content and intracellular water-holding capacity of plant leaves in large rock outcrop habitats were significantly better than in non-rock outcrop habitats. In addition, the higher intracellular water-holding capacity was likely to maintain the stability of the intra- and intercellular water environment, thus ensuring the full development of its photosynthetic metabolic capacity, and the stable intracellular water-use efficiency also made itself more vigorous under karstic drought. Taken together, the results suggested that the water metabolic traits of Lonicera japonica made it more adaptable to karst environments.
Keyphrases
  • plant growth
  • physical activity
  • cell death
  • single molecule
  • replacement therapy
  • pi k akt
  • cell wall