Login / Signup

Distribution and Relationships of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils and Plants near Major Lakes in Eastern China.

Zhiwei ZhaoWei HeRuilin WuFuliu Xu
Published in: Toxics (2022)
The distributions and correlations among polycyclic aromatic hydrocarbons (PAHs) in soils and plants were analyzed. In this study, 9 soil samples and 44 plant samples were collected near major lakes (Hongze Lake, Luoma Lake, Chaohu, Changhu, Danjiangkou Reservoir, Wuhan East Lake, Longgan Lake, Qiandao Lake and Liangzi Lake) in eastern China. The following results were obtained: The total contents of PAHs in soil varied from 99.17 to 552.10 ng/g with an average of 190.35 ng/g, and the total contents of PAHs in plants varied from 122.93 to 743.44 ng/g, with an average of 274.66 ng/g. The PAHs in soil were dominated by medium- and low-molecular-weight PAHs, while the PAHs in plants were dominated by low-molecular-weight PAHs. The proportion of high-molecular-weight PAHs was the lowest in both soil and plants. Diagnostic ratios and principal component analysis (PCA) identified combustion as the main source of PAHs in soil and plants. The plant PAH monomer content was negatively correlated with Koa. Acenaphthylene, anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene and dibenzo[a,h]anthracene were significantly correlated in plants and soil. In addition, no significant correlation between the total contents of the 16 PAHs and the content of high-, medium-, and low-molecular-weight PAHs in plants and soil was found. Bidens pilosa L. and Gaillardia pulchella Foug in the Compositae family and cron in the Poaceae family showed relatively stronger accumulation of PAHs, indicating their potential for phytoremediation.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • heavy metals
  • human health
  • health risk assessment
  • risk assessment
  • plant growth
  • climate change
  • high resolution
  • drinking water
  • air pollution
  • simultaneous determination