Design and assembly of porous organic cages.
Zezhao XuYangzhi YeYilan LiuHuiyu LiuShan JiangPublished in: Chemical communications (Cambridge, England) (2024)
Porous organic cages (POCs) represent a notable category of porous materials, showing remarkable material properties due to their inherent porosity. Unlike extended frameworks which are constructed by strong covalent or coordination bonds, POCs are composed of discrete molecular units held together by weak intermolecular forces. Their structure and chemical traits can be systematically tailored, making them suitable for a range of applications including gas storage and separation, molecular separation and recognition, catalysis, and proton and ion conduction. This review provides a comprehensive overview of POCs, covering their synthesis methods, structure and properties, computational approaches, and applications, serving as a primer for those who are new to the domain. A special emphasis is placed on the growing role of computational methods, highlighting how advanced data-driven techniques and automation are increasingly aiding the rapid exploration and understanding of POCs. We conclude by addressing the prevailing challenges and future prospects in the field.