Synthesis of Dithiocatechol-Pendant Polymers.
Jincai LiJoseph J RichardsonHirotaka EjimaPublished in: Journal of the American Chemical Society (2022)
Although the synthesis of thiophenol-pendant polymers was reported in the 1950s, the polymers generally suffered from oxidation and became insoluble in organic solvents, hampering detailed characterization and further applications. Dithiocatechol-pendant polymers, which have one additional ortho-thiol group than thiophenol-pendant polymers, have never been synthesized, despite their promise in various applications due to their analogous molecular structure with catechol-pendant polymers. Herein, we report the first synthesis of dithiocatechol-pendant polymers using a novel protection-deprotection strategy. We carefully examined the synthetic routes and identified the deprotection conditions that do not cause cross-linking of the dithiocatechol moieties. Because the resulting dithiocatechol-pendant polymers were soluble in common organic solvents (e.g., tetrahydrofuran and N , N -dimethylformamide), the polymers can be fully characterized by standard spectroscopic methods, providing valuable data for future researchers. We also showed that besides free-radical polymerization, reversible addition-fragmentation chain-transfer polymerization can also be adopted to synthesize dithiocatechol-pendant polymers. This work paves the way for the exploitation of dithiocatechol-containing polymers for the fabrication of novel functional materials.