Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.
Zhenwei WeiMichael WleklinskiChristina FerreiraRobert Graham CooksPublished in: Angewandte Chemie (International ed. in English) (2017)
Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 103 and were on the order of 102 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h-1 were reached in a very simple experimental system that could be multiplexed to greater scales.