Login / Signup

New Mechanistic Insights into Atmospheric Oxidation of Aniline Initiated by OH Radicals.

Tam V-T MaiThi T-D NguyenHieu T NguyenTrang T NguyenLam Kim Huynh
Published in: Environmental science & technology (2021)
This study theoretically reports the comprehensive kinetic mechanism of the aniline + OH reaction in the range of 200-2000 K and 0.76-7600 Torr. The temperature- and pressure-dependent behaviors, including time-resolved species profiles and rate coefficients, were studied within the stochastic RRKM-based master equation framework with the reaction energy profile, together with molecular properties of the species involved, characterized at the M06-2X/aug-cc-pVTZ level. Hindered internal rotation and Eckart tunneling treatments were included. The H-abstraction from the -NH2 moiety (to form C6H5NH (P1)) is found to prevail over the OH-addition on the C atom at the ortho site of aniline (to form 6-hydroxy-1-methylcyclohexa-2,4-dien-1-yl (I2)) with the atmospheric rate expressions (in cm3/molecule/s) as kabstraction(P1) = 3.41 × 101 × T-4.56 × exp (-255.2 K/T) for 200-2000 K and kaddition(I2) = 3.68 × 109 × T-7.39 × exp (-1163.9 K/T) for 200-800 K. The U-shaped temperature-dependent characteristics and weakly positive pressure dependence at low temperatures (e.g., T ≤ 800 K and P = 760 Torr) of ktotal(T) are also observed. The disagreement in ktotal(T) between the previous calculations and experimental studies is also resolved, and atmospheric aniline is found to be primarily removed by OH radicals (τOH ∼ 1.1 h) in the daytime. Also, via TD-DFT simulations, it is recommended to include P1 and I2 in any atmospheric photolysis-related model.
Keyphrases