Login / Signup

Preparation and Investigation of Cellulose Acetate/Gelatin Janus Nanofiber Wound Dressings Loaded with Zinc Oxide or Curcumin for Enhanced Antimicrobial Activity.

Tianyue HuangYuE ZengChaofei LiZhengqing ZhouYukang LiuJie XuLean WangDeng-Guang YuKe Wang
Published in: Membranes (2024)
The skin, as the largest organ, serves as a protective barrier against external stimuli. However, when the skin is injured, wound healing becomes a complex process influenced by physiological conditions, bacterial infections, and inflammation. To improve the process of wound healing, a variety of wound dressings with antibacterial qualities have been created. Electrospun nanofibers have gained significant attention in wound dressing research due to their large specific surface area and unique structure. One interesting method for creating Janus-structured nanofibers is side-by-side electrospinning. This work used side-by-side electrospinning to make cellulose acetate/gelatin Janus nanofibers. Curcumin and zinc oxide nanoparticles were added to these nanofibers. We studied Janus nanofibers' physicochemical characteristics and abilities to regulate small-molecule medication release. Janus nanofibers coated with zinc oxide nanoparticles and curcumin were also tested for antibacterial activity. The Janus nanofibers with specified physicochemical characteristics were successfully fabricated. Nanofibers released small-molecule medicines in a controlled manner. Additionally, the Janus nanofibers loaded with curcumin exhibited excellent antibacterial capabilities. This research contributes to the development of advanced wound dressings for promoting wound healing and combating bacterial infections.
Keyphrases
  • wound healing
  • oxide nanoparticles
  • small molecule
  • silver nanoparticles
  • emergency department
  • oxidative stress
  • tissue engineering
  • ionic liquid
  • working memory
  • soft tissue
  • high resolution
  • adverse drug