Login / Signup

Mechanistic and Kinetic Studies of the Ring Opening Metathesis Polymerization of Norbornenyl Monomers by a Grubbs Third Generation Catalyst.

Michael G HyattDylan J WalshRichard L LordJosé G Andino MartinezCamille Boucher-Jacobs
Published in: Journal of the American Chemical Society (2019)
The mechanism of ring-opening metathesis polymerization (ROMP) for a set of functionalized norbornenyl monomers initiated by a Grubbs third generation precatalyst [(H2IMes)(pyr)2(Cl)2Ru═CHPh] was investigated. Through a series of 12C/13C and 1H/2H kinetic isotope effect studies, the rate-determining step for the polymerization was determined to be the formation of the metallacyclobutane ring. This experimental result was further validated through DFT calculations showing that the highest energy transition state is metallacyclobutane formation. The effect of monomer stereochemistry (exo vs endo) of two types of ester substituted monomers was also investigated. Kinetic and spectroscopic evidence supporting the formation of a six-membered chelate through coordination of the proximal polymer ester to the Ru center is presented. This chelation and its impact on the rate of polymerization are shown to vary based on the monomer employed and its stereochemistry. The combination of this knowledge led to the derivation of a generic rate law describing the rate of polymerization of norbornene monomers initiated by a Grubbs third generation catalyst.
Keyphrases