Login / Signup

Macrocycle-Surfaced Polymer Nanocapsules: An Emerging Paradigm for Biomedical Applications.

Ziyi WangChen SunRuibing Wang
Published in: Bioconjugate chemistry (2022)
In the recent decade, macrocycle-surfaced polymer nanocapsules have been developed and studied as potential drug carriers. In particular, a unique group of these nanocapsules were constructed from a covalently self-assembled polymer network based on several classic macrocycles including cucurbituril, pillararene, and calixarene. The unique structure of these nanocapsules consists of a liquid or solid core and a shell laced with macrocycles in which the macrocycles not only act as the shell matrix of the nanocapsules but also allow further facile, modular functionalization via host-guest interactions with guest-tagged molecules. More interestingly, when a responsive cross-linker was introduced between the macrocycles, the payload inside the nanocapsules could be selectively released in the presence of typical hallmarks of certain diseases, which is of great interest for biomedical applications. In this Topical Review, macrocycle-surfaced polymer nanocapsules derived from covalently self-assembled polymer networks are introduced systemically with a focus on the molecular design and biomedical applications.
Keyphrases
  • emergency department
  • drug delivery
  • cancer therapy
  • reduced graphene oxide
  • wound healing