Login / Signup

Ternary Content-Addressable Memory Based on a Single Two-Dimensional Transistor for Memory-Augmented Learning.

Jun CaiPeng WuRahul TripathiJing KongZhihong ChenJoerg Appenzeller
Published in: ACS nano (2024)
Ternary content-addressable memory (TCAM) is promising for data-intensive artificial intelligence applications due to its large-scale parallel in-memory computing capabilities. However, it is still challenging to build a reliable TCAM cell from a single circuit component. Here, we demonstrate a single transistor TCAM based on a floating-gate two-dimensional (2D) ambipolar MoTe 2 field-effect transistor with graphene contacts. Our bottom graphene contacts scheme enables gate modulation of the contact Schottky barrier heights, facilitating carrier injection for both electrons and holes. The 2D nature of our channel and contact materials provides device scaling potentials beyond silicon. By integration with a floating-gate stack, a highly reliable nonvolatile memory is achieved. Our TCAM cell exhibits a resistance ratio larger than 1000 and symmetrical complementary states, allowing the implementation of large-scale TCAM arrays. Finally, we show through circuit simulations that in-memory Hamming distance computation is readily achievable based on our TCAM with array sizes up to 128 cells.
Keyphrases