Login / Signup

Applications of copper and silver nanoparticles on wheat plants to induce drought tolerance and increase yield.

Farooq AhmedBilal JavedAbdul RazzaqZia-Ur-Rehman Mashwani
Published in: IET nanobiotechnology (2021)
Drought adversely affects the yield, quality and nutritional value of the crop plants. Additionally, it causes unrest in society and economic loss to the farmers and governments. The present study involved the applications of nanoparticles to induce drought tolerance and improve yield in the wheat (Triticum aestivum L.) plants. Green chemical methods were used for the synthesis of silver nanoparticles (AgNPs) and copper nanoparticles (CuNPs). CuNPs were used in 0, 3, 5 and 7 mg/L and 0, 10, 20 and 30 mg/L of AgNPs were tested at -4, -6 and -8 bars osmotic potential in laboratory experiments and 40%, 60% and 80% field capacity (FC) in the glasshouse experiments were maintained. The solution culture experiments revealed significantly higher chlorophyll stability index (CSI), leaf succulence (LS) and leaf K (LK) content in plants treated with 03 mg/L of CuNPs and 10 mg/L of AgNPs, indicated the positive role of CuNPs and AgNPs in drought tolerance of wheat. A similar trend was observed for stomatal conductance (SC) and morphological parameters with the applications of Cu and Ag nanoparticles at different levels of field capacity. The results of this study provide the experimental evidence to use CuNPs and AgNPs to induce drought resistance and improve yield in the wheat plants by a satisfactory increase in nutrients uptake and water retention.
Keyphrases
  • silver nanoparticles
  • climate change
  • arabidopsis thaliana
  • heat stress
  • plant growth
  • quantum dots
  • single cell
  • newly diagnosed