Login / Signup

Efficiency Decreases in a Laminated Solar Cell Developed for a UAV.

Krzysztof MatejaWojciech SkarkaAleksandra Drygała
Published in: Materials (Basel, Switzerland) (2022)
Achieving energy autonomy in a UAV (unmanned aerial vehicle) is an important direction for aerospace research. Long endurance flights allow for continuous observations, taking of measurements and control of selected parameters. To provide continuous flight, a UAV must be able to harvest energy externally. The most popular method to achieve this is the use of solar cells on the wings and structure of the UAV. Flexible solar cells mounted on the surface of the wings can be damaged and contaminated. To prevent these negative changes, it is necessary to apply a protective coating to the solar cells. One of the more promising methods is lamination. To properly carry out this process, some parameters have to be appropriately adjusted. The appropriate selection of temperature and feed speed in the laminator allows a PV (photovoltaic) panel to be coated with film, minimizing any defects in the structure. Covering PV panels with film reduces the performance of the solar cells. By measuring the current-voltage characteristics, data were obtained showing the change in the performance of solar cells before and after lamination. In the case of testing flexible PV panels, the efficiency decreased from 24.29 to 23.33%. This informed the selection of the appropriate number of solar cells for the UAV, considering the losses caused by the lamination process.
Keyphrases
  • solar cells
  • stem cells
  • electronic health record
  • big data
  • cell therapy
  • artificial intelligence
  • data analysis