Login / Signup

Peptides and primate personality: Central and peripheral oxytocin and vasopressin levels and social behavior in two baboon species (Papio hamadryas and Papio anubis).

Daniel J CoppetoJordan S MartinErik J RingenVittorio PalmieriLarry J YoungAdrian V Jaeggi
Published in: Peptides (2024)
The neurohormones oxytocin (OT) and arginine vasopressin (AVP) are involved in social behaviors and psychiatric conditions. However, more research on nonhuman primates with complex social behaviors is needed. We studied two closely-related primate species with divergent social and mating systems; hamadryas baboons (Papio hamadryas, n=38 individuals) and anubis baboons (Papio anubis, n=46). We measured OT in cerebrospinal fluid (CSF, n=75), plasma (n=81) and urine (n=77), and AVP in CSF (n=45), and we collected over 250 hours of focal behavioral observations. Using Bayesian multivariate models, we found no clear species difference in hormone levels; the strongest support was for hamadryas having higher CSF OT levels than anubis (posterior probability [PP] for females = 0.75, males = 0.84). Looking at nine specific behaviors, OT was associated with affiliative behaviors (approach, proximity, grooming, PP ∼ 0.85 - 1.00), albeit inconsistently across sources of measurement (CSF, plasma, and urine, which were uncorrelated with each other). Most behaviors had low repeatability (R ∼ 0 - 0.2), i.e. they did not exhibit stable between-individual differences (or "personality"), and different behaviors did not neatly coalesce into higher-order factors (or "behavioral syndromes"), which cautions against the use of aggregate behavioral measures and highlights the need to establish stable behavioral profiles when testing associations with baseline hormone levels. In sum, we found some associations between peptides and social behavior, but also many null results, OT levels from different sources were uncorrelated, and our behavioral measures did not indicate clear individual differences in sociability.
Keyphrases
  • mental health
  • healthcare
  • cerebrospinal fluid
  • nitric oxide
  • genetic diversity
  • drug induced