Login / Signup

Web-Based Open-Source Tool for Isotachophoresis.

Alexandre S AvaroYixiao SunKaiying JiangSupreet S BahgaAnne-Virginie Salsac
Published in: Analytical chemistry (2021)
We present the development of a client-side web-based simulator for complex electrophoresis phenomena, including isotachophoresis. The simulation tool is called Client-based Application for Fast Electrophoresis Simulation (CAFES). CAFES uses the broad cross-browser compatibility of JavaScript to provide a rapid and easy-to-use tool for coupled unsteady electromigration, diffusion, and equilibrium electrolyte reactions among multiple weak electrolytes. The code uses a stationary grid (for simplicity) and an adaptive time step to provide reliable estimates of ion concentration dynamics (including pH profile evolution), requiring no prior installation nor compilation. CAFES also offers a large database of commonly used species and their relevant physicochemical properties. We present a validation of predictions from CAFES by comparing them to experimental data of peak- and plateau-mode isotachophoresis experiments. The code yields accurate estimates of interface velocity, plateau length and relative intensity, and pH variations while significantly reducing the computation time compared to existing codes. The tool is open-source and available for free at https://microfluidics.stanford.edu/cafes.
Keyphrases
  • ionic liquid
  • high resolution
  • molecular dynamics
  • machine learning
  • data analysis
  • aortic dissection