Login / Signup

Observing Real-Time Adhesion of Microparticles on Glass Surfaces.

Pillalamarri SrikrishnarkaDhivyaraja KumaranAmoghavarsha Ramachandra KiniVishal KumarAnkit NagarMd Rabiul IslamRamamurthy NagarajanThalappil Pradeep
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
Fouling on glass surfaces reduces the solar panel efficiency and increases water consumption for cleaning. Superhydrophobic coatings on glass enable self-cleaning by allowing water droplets to carry away dirt particles. Observing the interaction between charged particles and surfaces provides insights into effective cleaning. Using a high-speed camera and a long-distance objective, we analyzed the in situ deposition of variously functionalized and charged silica dust microparticles on chemically treated glass. The ambient charges for the control, hydrophobic, and positively charged particles were approximately -0.5, -0.13, and +0.5 nC, respectively. We found that a positively charged particle of 2.3 ± 1.2 μm diameter adhered to hydroxylated glass in ∼0.054 s, compared to 0.40 and 0.45 s for quaternary ammonium- and fluorosilane-functionalized hydrophobic glass. Experiments suggest that quaternary ammonium-functionalized glass surfaces are about 77.8% more resistant to soiling than bare surfaces.
Keyphrases