Login / Signup

Confocal Shear Wave Acoustic Radiation Force Optical Coherence Elastography for Imaging and Quantification of the In Vivo Posterior Eye.

Youmin HeYueqiao QuJiang ZhuYi ZhangArya SaidiTeng MaQifa ZhouZhongping Chen
Published in: IEEE journal of selected topics in quantum electronics : a publication of the IEEE Lasers and Electro-optics Society (2018)
Retinal diseases, such as age-related macular degeneration (AMD), are the leading cause of blindness in the elderly population. Since no known cures are currently present, it is crucial to diagnose the condition in its early stages so that disease progression is monitored. Recent advances show that the mechanical elasticity of the posterior eye changes with the onset of AMD. In this work, we present a quantitative method of mapping the mechanical elasticity of the posterior eye using confocal shear wave acoustic radiation force optical coherence elastography (SW-ARF-OCE). This technique has been developed and validated with both an ex-vivo porcine tissue model and a customized in-vivo rabbit model, which both showed the quantified elasticity variations between different layers. This study verifies the feasibility of using this technology for the quantification and diagnosis of retinal diseases from the in-vivo posterior eye.
Keyphrases
  • high resolution
  • age related macular degeneration
  • optical coherence tomography
  • single molecule
  • radiation therapy
  • raman spectroscopy
  • liver fibrosis
  • photodynamic therapy
  • fluorescence imaging