A Comparative Analysis on Impact of Extraction Methods on Carotenoids Composition, Antioxidants, Antidiabetes, and Antiobesity Properties in Seagrass Enhalus acoroides : In Silico and In Vitro Study.
Raymond Rubianto TjandrawinataFahrul NurkolisPublished in: Marine drugs (2024)
Enhalus acoroides , a tropical seagrass, is known for its significant contribution to marine ecosystems and its potential health benefits due to bioactive compounds. This study aims to compare the carotenoid levels in E. acoroides using green extraction via ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) and to evaluate the biological properties of these extracts against oxidative stress, diabetes, and obesity through in silico and in vitro analyses. E. acoroides samples were collected from Manado City, Indonesia, and subjected to UAE and MAE. The extracts were analyzed using UHPLC-ESI-MS/MS to identify carotenoids, including β-carotene, lutein, lycopene, β-cryptoxanthin, and zeaxanthin. In silico analysis was conducted to predict the compounds' bioactivity, toxicity, and drug-likeness using WAY2DRUG PASS and molecular docking with CB-Dock2. The compounds C3, C4, and C7 demonstrated notable interactions, with key metabolic proteins and microRNAs, further validating their potential therapeutic benefits. In vitro assays evaluated antioxidant activities using DPPH and FRAP assays, antidiabetic properties through α-glucosidase and α-amylase inhibition, and antiobesity effects via lipase inhibition and MTT assay with 3T3-L1 cells. Results indicated that both UAE and MAE extracts exhibited significant antioxidant, antidiabetic, and antiobesity activities. MAE extracts showed higher carotenoid content and greater biological activity compared to UAE extracts. These findings suggest that E. acoroides , mainly when extracted using MAE, has promising potential as a source of natural bioactive compounds for developing marine-based antioxidant, antidiabetic, and antiobesity agents. This study supplements existing literature by providing insights into the efficient extraction methods and the therapeutic potential of E. acoroides carotenoids.
Keyphrases
- molecular docking
- oxidative stress
- ms ms
- type diabetes
- metabolic syndrome
- healthcare
- public health
- molecular dynamics simulations
- high throughput
- mental health
- cardiovascular disease
- liquid chromatography tandem mass spectrometry
- cell death
- insulin resistance
- risk assessment
- emergency department
- physical activity
- mass spectrometry
- health information
- adverse drug
- ischemia reperfusion injury
- liquid chromatography
- high performance liquid chromatography
- tandem mass spectrometry
- high resolution mass spectrometry