Endothelin-1 as a novel target for the prevention of metabolic dysfunction with intermittent hypoxia in male participants.
Jacqueline K LimbergSarah E BakerHumphrey G Petersen-JonesWinston GuoAn HuangMichael D JensenPrachi SinghPublished in: American journal of physiology. Regulatory, integrative and comparative physiology (2022)
We examined the effect of intermittent hypoxia (IH, a hallmark feature of sleep apnea) on adipose tissue lipolysis and the role of endothelin-1 (ET-1) in this response. We hypothesized that IH can increase ET-1 secretion and plasma free fatty acid (FFA) concentrations. We further hypothesized that inhibition of ET-1 receptor activation with bosentan could prevent any IH-mediated increase in FFA. To test this hypothesis, 16 healthy male participants (32 ± 5 yr, 26 ± 2 kg/m 2 ) were exposed to 30 min of IH in the absence (control) and presence of bosentan (62.5 mg oral twice daily for 3 days prior). Arterial blood samples for ET-1, epinephrine, and FFA concentrations, as well as abdominal subcutaneous adipose tissue biopsies (to assess transcription of cellular receptors/proteins involved in lipolysis), were collected. Additional proof-of-concept studies were conducted in vitro using primary differentiated human white preadipocytes (HWPs). We show that IH increased circulating ET-1, epinephrine, and FFA ( P < 0.05). Bosentan treatment reduced plasma epinephrine concentrations and blunted IH-mediated increases in FFA ( P < 0.01). In adipose tissue, bosentan had no effect on cellular receptors and proteins involved in lipolysis ( P > 0.05). ET-1 treatment did not directly induce lipolysis in differentiated HWP. In conclusion, IH increases plasma ET-1 and FFA concentrations. Inhibition of ET-1 receptors with bosentan attenuates the FFA increase in response to IH. Based on a lack of a direct effect of ET-1 in HWP, we speculate the effect of bosentan on circulating FFA in vivo may be secondary to its ability to reduce sympathoadrenal tone.