Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses.
K L NgaiLi-Min WangHai-Bin YuPublished in: The journal of physical chemistry letters (2017)
Glasses are materials essential for modern technology; they are usually prepared by cooling liquids. Recently, novel ultrastable glasses (SGs) with extraordinary thermodynamic and kinetic stability have been created by vapor deposition at appropriate substrate temperatures. However, the underlying mechanism for the formation of SGs is still not established. For most of the molecular SGs created so far, we demonstrate that the formation of SGs is closely related to the Johari-Goldstein β-relaxation from the fact that the lowest substrate temperatures possible for the formation of SGs match the secondary glass-transition temperatures, where the β-relaxation time reaches 103 s. Theoretically the β-relaxation time via the primitive relaxation time of the coupling model has proven capable of accounting for the enhancement of molecular mobility at the surface. Thus our findings provide evidence to support that the immense enhancement of molecular diffusion at the surface is critical for the formation of SGs. The result has implications in the design and fabrication of SGs.
Keyphrases