Login / Signup

Metalloporphyrin Encapsulation for Enhanced Conversion of CO2 to C2H4.

Tingting YanJin-Han GuoZhi-Qiang LiuWei-Yin Sun
Published in: ACS applied materials & interfaces (2021)
Electrochemical conversion of CO2 into valuable products is a promising approach. Efficient electrocatalysts are highly desirable but remain to be developed. Here, we proposed a molecular encapsulation strategy to enrich intermediates for facilitating electrochemical conversion of CO2 to C2H4. This strategy is combining M-TCPP [M = FeCl, Co, and Ni; TCPP = tetrakis(4-carboxyphenyl) porphyrin] with a Cu-based metal-organic framework (Cu-MOF) to create a series of metalloporphyrin-decorated Cu catalysts with a coral-like shape (named as M-TCPP@Cu). M-TCPP in the catalysts could supply more CO intermediates to the Cu sites, giving high selectivity for producing C2H4 and lowering overpotentials for CO2 reduction. Meanwhile, the coral-like structure of the catalyst with abundant active sites is conducive to mass diffusion and benefits the conversion of CO2. We realized a higher C2H4 Faradaic efficiency (FE) of 33.42% at -1.17 V versus reversible hydrogen electrode (RHE) on the Fe-TCPP@Cu electrode than that on the sole Cu electrode (16.85%, at -1.27 V vs RHE). Furthermore, due to the encapsulated structure resulted from one-pot reaction that ensures the dispersion of active centers in M-TCPP, metalloporphyrin-decorated Cu catalysts show better performance than the physical mixture of Cu-MOFs and M-TPPs (M = FeCl, Co, and Ni; TPP = 5,10,15,20-tetraphenylporphyrin). The results provide a new strategy for the design of high-performance Cu catalysts from Cu-MOFs for CO2 conversion.
Keyphrases
  • metal organic framework
  • gold nanoparticles
  • quantum dots
  • highly efficient
  • ionic liquid
  • high resolution