Login / Signup

Highly Uniform Spherical MoO 2 -MoO 3 /Polypyrrole Core-Shell Nanocomposite as an Optoelectronic Photodetector in UV, Vis, and IR Domains.

Asmaa M ElsayedFatemah Homoud AlkallasAmira Ben Gouider TrabelsiMohamed Rabia
Published in: Micromachines (2023)
A highly uniform spherical MoO 2 -MoO 3 /polypyrrole core-shell nanocomposite has been successfully synthesized as an optoelectronic photon sensing material, capable of detecting light in the UV, Vis, and IR domains. The nanocomposite is prepared through the oxidation of pyrrole using Na 2 MoO 4 , resulting in a uniform spherical morphology that has been confirmed by TEM, theoretical modeling, and SEM analyses. This morphology contributes to its promising optical behavior, characterized by a small bandgap of 1.36 eV. The optoelectronic photosensing capability of the nanocomposite has been evaluated across the UV, Vis, and IR spectra, demonstrating high efficiency. The photoresponsivity R values indicate the ability of the nanocomposite to generate hot electrons in response to incident photons. With an R value of 4.15 mA·W -1 at 440 nm, this optoelectronic device exhibits considerable promise for integration into an advanced technological apparatus. The detection (D) value of 9.30 × 10 8 Jones at 440 nm further confirms the high sensitivity in the Vis region. The excellent stability of the device can be attributed to the inherent MoO 2 -MoO 3 oxide and Ppy polymer materials. This stability has been demonstrated through reproducibility studies and current-voltage measurements under various optical conditions. The combination of stability, efficiency, and sensitivity makes this optoelectronic device well suited for light sensing applications in both industrial and commercial settings. Its promising performance opens up opportunities for advancements in various fields requiring accurate and reliable light detection.
Keyphrases