Quantum trajectory framework for general time-local master equations.
Brecht DonvilPaolo Muratore-GinanneschiPublished in: Nature communications (2022)
Master equations are one of the main avenues to study open quantum systems. When the master equation is of the Lindblad-Gorini-Kossakowski-Sudarshan form, its solution can be "unraveled in quantum trajectories" i.e., represented as an average over the realizations of a Markov process in the Hilbert space of the system. Quantum trajectories of this type are both an element of quantum measurement theory as well as a numerical tool for systems in large Hilbert spaces. We prove that general time-local and trace-preserving master equations also admit an unraveling in terms of a Markov process in the Hilbert space of the system. The crucial ingredient is to weigh averages by a probability pseudo-measure which we call the "influence martingale". The influence martingale satisfies a 1d stochastic differential equation enslaved to the ones governing the quantum trajectories. We thus extend the existing theory without increasing the computational complexity.