Login / Signup

New Sustainable Synthetic Routes to Cyclic Oxyterpenes Using the Ecocatalyst Toolbox.

Camille BihanicArthur LasbleizMorgan L G RegnierEddy PetitPierre Le BlainvauxClaude Grison
Published in: Molecules (Basel, Switzerland) (2021)
Cyclic oxyterpenes are natural products that are mostly used as fragrances, flavours and drugs by the cosmetic, food and pharmaceutical industries. However, only a few cyclic oxyterpenes are accessible via chemical syntheses, which are far from being ecofriendly. We report here the synthesis of six cyclic oxyterpenes derived from ß-pinene while respecting the principles of green and sustainable chemistry. Only natural or biosourced catalysts were used in mild conditions that were optimised for each synthesis. A new generation of ecocatalysts, derived from Mn-rich water lettuce, was prepared via green processes, characterised by MP-AES, XRPD and TEM analyses, and tested in catalysis. The epoxidation of ß-pinene led to the platform molecule, ß-pinene oxide, with a good yield, illustrating the efficacy of the new generation of ecocatalysts. The opening ß-pinene oxide was investigated in green conditions and led to new and regioselective syntheses of myrtenol, 7-hydroxy-α-terpineol and perillyl alcohol. Successive oxidations of perillyl alcohol could be performed using no hazardous oxidant and were controlled using the new generation of ecocatalysts generating perillaldehyde and cuminaldehyde.
Keyphrases
  • alcohol consumption
  • high throughput
  • room temperature
  • climate change
  • drug discovery
  • drug induced
  • light emitting