Ultrahigh-Performance Optoelectronics Demonstrated in Ultrathin Perovskite-Based Vertical Semiconductor Heterostructures.
Tiefeng YangXiao WangBiyuan ZhengZhaoyang QiChao MaYuhao FuYongping FuMatthew P HautzingerYing JiangZiwei LiPeng FanFang LiWeihao ZhengZiyu LuoJie LiuBin YangShula ChenDong LiLijun ZhangSong JinAnlian PanPublished in: ACS nano (2019)
Two-dimensional (2D) atomic layered semiconductor (e.g., transition metal dichalcogenides, TMDCs) heterostructures display diverse novel interfacial carrier properties and have potential applications in constructing next generation highly compact electronics and optoelectronics devices. However, the optoelectronic performance of this kind of semiconductor heterostructures has difficulty reaching the expectations of practical applications, due to the intrinsic weak optical absorption of the atomic-thick component layers. Here, combining the extraordinary optoelectronic properties of quantum-confined organic-inorganic hybrid perovskite (PVK), we design an ultrathin PVK/TMDC vertical semiconductor heterostructure configuration and realize the controlled vapor-phase growth of highly crystalline few-nanometer-thick PVK layers on TMDCs monolayers. The achieved ultrathin PVKs show strong thickness-induced quantum confinement effect, and simultaneously form band alignment-engineered heterointerfaces with the underlying TMDCs, resulting in highly efficient interfacial charge separation and transport. Electrical devices constructed with the as-grown ultrathin PVK/WS2 heterostructures show ambipolar transport originating from p-type PVK and n-type WS2, and exhibit outstanding optoelectronic characteristics, with the optimized response time and photoresponsivity reaching 64 μs and 11174.2 A/W, respectively, both of which are 4 orders of magnitude better than the heterostructures with a thick PVK layer, and also represent the best among all previously reported 2D layered semiconductor heterostructures. This work provides opportunities for 2D vertical semiconductor heterostructures via incorporating ultrathin PVK layers in high-performance integrated optoelectronics.