Login / Signup

Spin Filtering in CrI3 Tunnel Junctions.

Tula R PaudelEvgeny Y Tsymbal
Published in: ACS applied materials & interfaces (2019)
The recently discovered magnetism of two-dimensional (2D) van der Waals crystals has attracted a lot of attention. Among these materials is CrI3, a magnetic semiconductor, exhibiting transitions between ferromagnetic and antiferromagnetic orderings under the influence of an applied magnetic field. Here, using first-principles methods based on density functional theory, we explore spin-dependent transport in tunnel junctions formed of face-centered cubic Cu(111) electrodes and a CrI3 tunnel barrier. We find about 100% spin polarization of the tunneling current for a ferromagnetically ordered four-monolayer CrI3 and a tunneling magnetoresistance of about 3000% associated with a change of magnetic ordering in CrI3. This behavior is understood in terms of the spin and wave-vector-dependent evanescent states in CrI3, which control the tunneling conductance. We find a sizable charge transfer from Cu to CrI3, which adds new features to the mechanism of spin filtering in CrI3-based tunnel junctions. Our results elucidate the mechanisms of spin filtering in CrI3 tunnel junctions and provide important insights for the design of magnetoresistive devices based on 2D magnetic crystals.
Keyphrases
  • density functional theory
  • room temperature
  • single molecule
  • molecular dynamics
  • ionic liquid
  • anterior cruciate ligament reconstruction
  • transition metal
  • mass spectrometry
  • carbon nanotubes
  • reduced graphene oxide