Login / Signup

All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings.

Alexey GruzdAlexander TokarevIgor TokarevDmitri KuksenkovSergiy Minko
Published in: ACS applied materials & interfaces (2021)
The vast majority of light-emitting diode and liquid-crystal displays, solar panels, and windows in residential and industrial buildings use glass panels owing to their high mechanical stability, chemical resistance, and optical properties. Glass surfaces reflect about 4-5% of incident light if no antireflective coating is applied. In addition to energy losses in displays, surface reflections diminish picture quality. Engineering of antireflective coatings can be beneficial for all types of glass screens, specifically for large screens and touch-screen devices when scratch-resistance and self-cleaning properties of the glass surface are also desired. A scalable and robust approach to produce antireflective coatings for glass surfaces with desired optical and mechanical properties is introduced in this work. The developed coating mimics the structure of a moth-eye cornea. The coating is a subwavelength-microstructured thin layer on the glass surface made of a monolayer of hemispherical silica nanoparticles obtained by hydrothermal fusion of spherical particles to the glass substrate. The sequence of the particle deposition in the layer-by-layer process is adjusted to balance attractive-repulsive interactions among nanoparticles and between the nanoparticles and the glass surface to generate coatings with a high surface coverage of up to 70%, which exceeds the 54.7% limit of the random sequential addition model. This level of surface coverage allows for a combination of properties beneficial for the described applications: (i) an average reflectance of 0.5 ± 0.2% for a visible and near-infrared optical spectrum, (ii) an improved mechanical stability and scratch resistance, and (iii) non-wetting behavior.
Keyphrases
  • high throughput
  • high resolution
  • type diabetes
  • escherichia coli
  • dna methylation
  • healthcare
  • gene expression
  • air pollution
  • genome wide
  • wastewater treatment
  • municipal solid waste