Login / Signup

Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2 Capture.

Ping LiHua Chun Zeng
Published in: Environmental science & technology (2017)
Exploring efficient and low-cost solid sorbents is essential for carbon capture and storage. Herein, a novel class of high-performance CO2 adsorbent (rGO@MgO/C) is engineered based on the controllable integration of reduced graphene oxide (rGO), amorphous carbon, and MgO nanocrystallites. The optimized rGO@MgO/C nanocomposite exhibits remarkable CO2 capture capacity (up to 31.5 wt % at 27 °C, 1 bar CO2, and 22.5 wt % under the simulated flue gas), fast sorption rate, and strong process durability. The enhanced capture capability of CO2 is the best among all of the MgO-based sorbents reported so far. The high performance of rGO@MgO/C nanocomposite can be ascribed to the hierarchical architecture and special physicochemical features, including the sheet-on-sheet sandwich-like structure, ultrathin nanosheets with abundant nanopores, large surface area, and highly dispersed ultrafine MgO nanocrystallites (ca. 3 nm in size), together with the rGO sheets and in situ generated amorphous carbon that serve as a dual carbon support and protectant system with which to prevent MgO nanocrystallites from agglomeration. In addition, the CO2-uptake capacity at intermediate temperature (e.g., 350 °C) can be further improved threefold through alkali metal salt promotion treatment. This work provides a facile and effective strategy with which to engineer advanced graphene-based functional nanocomposites with rationally designed compositions and architectures for potential applications in the field of gas storage and separation.
Keyphrases
  • reduced graphene oxide
  • gold nanoparticles
  • room temperature
  • low cost
  • particulate matter
  • risk assessment
  • solid state
  • photodynamic therapy
  • climate change
  • air pollution
  • highly efficient