Login / Signup

Biotechnological Frontiers of DNA Nanomaterials Continue to Expand: Bacterial Infection using Virus-Inspired Capsids.

Maartje M C Bastings
Published in: Angewandte Chemie (International ed. in English) (2023)
The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revisit the icosahedral capsid structure of the phiX174 bacteriophage and reloaded the original viral genome as cargo into their fully synthetic architecture. Surprisingly, when using a favorable combination of structural rigidity and dynamic multivalent cargo entrapment, the synthetic particles were able to infect non-competent bacterial cells and produce the original phiX174 bacteriophage. This work presents an exciting new direction of DNA nanotech for bio-engineering applications which involve bacterial interactions.
Keyphrases
  • circulating tumor
  • cell free
  • single molecule
  • induced apoptosis
  • stem cells
  • nucleic acid
  • sars cov
  • hydrogen peroxide
  • genome wide
  • dna methylation
  • endoplasmic reticulum stress