Login / Signup

Method for Improving Range Resolution of Indoor FMCW Radar Systems Using DNN.

Hwesoo ParkMinji KimYunho JungSeongjoo Lee
Published in: Sensors (Basel, Switzerland) (2022)
Various studies on object detection are being conducted, and in this regard, research on frequency-modulated continuous wave (FMCW) RADAR is being actively conducted. FMCW RADAR requires high-distance resolution to accurately detect objects. However, if the distance resolution is high, a high-modulation bandwidth is required, which has a prohibitively high cost. To address this issue, we propose a two-step algorithm to detect the location of an object through DNN using many low-cost FMCW RADARs. The algorithm first infers the sector by measuring the distance to the object for each FMCW RADAR and then measures the position through the grid according to the inferred sector. This improves the distance resolution beyond the modulation bandwidth. Additionally, to detect multiple targets, we propose a Gaussian filter. Multiple targets are detected through an ordered-statistic constant false-alarm rate (OS-CFAR), and there is an 11% probability that multiple targets cannot be detected. In the lattice structure proposed in this paper, the performance of the proposed algorithm compared to those in existing works was confirmed with respect to the cost function. The difference in performance versus complexity was also confirmed when the proposed algorithm had the same complexity and the same performance, and it was confirmed that there was a performance improvement of up to five-fold compared to those in previous papers. In addition, multi-target detection was shown in this paper. Through MATLAB simulation and actual measurement on a single target, RMSEs were 0.3542 and 0.41002 m, respectively, and through MATLAB simulation and actual measurement on multiple targets, RMSEs were confirmed to be 0.548265 and 0.762542 m, respectively. Through this, it was confirmed that this algorithm works in real RADAR.
Keyphrases
  • machine learning
  • deep learning
  • single molecule
  • working memory
  • neural network
  • air pollution
  • loop mediated isothermal amplification
  • risk assessment
  • real time pcr
  • label free
  • heavy metals
  • quantum dots