From Incident Light to Persistent and Regenerable Radicals of Urea-Assembled Benzophenone Frameworks: A Structural Investigation.
Dustin W GoodlettAmmon J SindtMuhammad Saddam HossainRajkumar MeruguMark D SmithSophya V GarashchukAnna D GudmundsdottirLinda S ShimizuPublished in: The journal of physical chemistry. A (2021)
Herein we probe the effects of crystalline structure and geometry on benzophenone photophysics, self-quenching, and the regenerable formation of persistent triplet radical pairs at room temperature. Radical pairs are not observed in solution but appear via an emergent pathway within the solid-state assembly. Single crystal X-ray diffraction (SC-XRD) of two sets of constitutional isomers, benzophenone bis-urea macrocycles, and methylene urea-tethered dibenzophenones are compared. Upon irradiation with 365 nm light-emitting diodes (LEDs), each forms photogenerated radicals as monitored by electron paramagnetic resonance (EPR). Once generated, the radicals exhibit half-lives from 2 to 60 days before returning to starting material without degradation. Re-exposure to light regenerates the radicals with similar efficiency. Subtle differences in the structure of the crystalline frameworks modulates the maximum concentration of photogenerated radicals, phosphorescence quantum efficiency (φ), and n-type self-quenching as observed using laser flash photolysis (LFP). These studies along with the electronic structure analysis based on the time-dependent density functional theory (TD-DFT) suggest the microenvironment surrounding benzophenone largely dictates the favorability of self-quenching or radical formation and affords insights into structure/function correlations. Advances in understanding how structure determines the excited state pathway solid-state materials undertake will aid in the design of new radical initiators, components of OLEDs, and NMR polarizing agents.