Because the human eye cannot visually detect the results of direct bilirubin test papers accurately and quantitatively, this study proposes four different highly collimated mini light-emitting diodes (HC mini-LEDs) as light sources for detection. First, different concentrations of bilirubin were oxidized to biliverdin by FeCl 3 on the test paper, and pictures were obtained with a smartphone. Next, the red, green, and blue (RGB) channels of the pictures were separated to average grayscale values, and their linear relationship with the direct bilirubin concentration was analyzed to detect bilirubin on the test paper noninvasively and quantitatively. The experimental results showed that when green HC mini-LEDs were used as the light sources and image analysis was performed using the G channel, for a direct bilirubin concentration range of 0.1-2 mg/dL, the G channel determination coefficient (R 2 ) reached 0.9523 and limit of detection was 0.459 mg/dL. The detection method proposed herein has advantages such as rapid analysis, noninvasive detection, and digitization according to RGB grayscale changes in the images of the detection test paper.