Login / Signup

Fluorinated porous organic frameworks for improved CO2 and CH4 capture.

Angiolina ComottiFabio CastiglioniSilvia BraccoJacopo PeregoAlessandro PedriniMattia NegroniPiero Sozzani
Published in: Chemical communications (Cambridge, England) (2019)
A porous 3D selectively fluorinated framework (F-PAF1), robust yet flexible and with a surface area of 2050 m2 g-1, was synthesised by condensation of an ad hoc prepared fluorinated tetraphenylmethane (TPM) monomer to ensure homogenously distributed C-F dipoles in the swellable architecture. Tetradentate TPM was also the comonomer for the reaction with fluorinated difunctional monomers to obtain frameworks (FMFs) with a controlled amount of regularly spaced reorientable C-F dipoles. The isosteric heat of adsorption of CO2 was increased by 53% by even moderate C-F dipole insertion, with respect to the non-fluorinated frameworks. CO2/N2 selectivity was also increased up to a value of 50 for the difluoro-containing comonomer. Moreover, methane shows optimal interaction energies of 24 kJ mol-1.
Keyphrases
  • high intensity
  • highly efficient
  • room temperature
  • heat stress
  • anaerobic digestion
  • density functional theory
  • water soluble
  • solid state