Synthesis, characterization and investigation of algal oxidative effects of water-soluble copper phthalocyanine containing sulfonate groups.
Ayşegül TekbabaSena Çağatay ÖzpınarHatice TuncaTuğba Ongun SevindikAli DoğruArmağan GünselAhmet T BilgiçliM Nilüfer YarasirPublished in: Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry (2021)
In this study, the chemical and algicidal properties of the newly synthesized compound (2) were evaluated and its algal oxidative effects were determined in Arthrospira platensis and Chlorella vulgaris. First, we have reported on the synthesis and characterization of highly water-soluble copper (II) phthalocyanine (2), containing sodium 2-mercaptoethanesulfonate (2) substituents at the peripheral positions. Some spectroscopic techniques were used to characterize the new synthesized compound (2). In terms of biological properties, C. vulgaris were more tolerance to compound (2) than A. platensis depending to growth parameters. When SOD (Superoxide dismutase) activity significantly increased at 0.25 ppb and 1.5 ppb concentrations in A. platensis cultures, it increased at 6 ppb concentration in C. vulgaris cultures. GR (Glutathione reductase) activity decreased at 1 ppb and 1.5 ppb concentrations while APX (Ascorbate peroxidase) activity did not show a significant change at any concentrations in A. platensis cultures. GR activity showed a significant increase at 6 ppb concentration, while APX activity increased at all concentrations compared to control in C. vulgaris cultures. MDA (malondialdehyde) and H2O2 content decreased at 1 and 1.5 ppb concentrations but there were significant increases in the proline content at all concentrations compared to the control in A. platensis. MDA, H2O2 and free proline contents showed a significant increase at 0.5 ppb concentration in C. vulgaris. In conclusion, compound (2) have algicidal effects, and also it causes to oxidative stress in these organisms.