Login / Signup

Synthesis of Linear to Cyclic Polylactide via a One-Pot Step-Wise Ring-Opening Polymerization and Back-Biting Reaction of Ring Closure Using Magnesium Complexes.

Xiaoyang MaoJi XianRui WangXinning HanXiaobo PanJincai Wu
Published in: Inorganic chemistry (2022)
The controllable synthesis of cyclic polylactide remains a challenging topic so far. In this work, a new strategy of one-pot step-wise ring-opening polymerization (ROP) followed by a back-biting reaction of ring closure was reported, in which one magnesium atrane-like complex { N , N -bis[3,5-di-cumyl-2-benzyloxy]-[2-(2-aminoethoxy)ethoxy]magnesium} was utilized to initiate the ROP of lactide using 4-dimethylaminopyridine as a co-catalyst; then, macrocyclic polylactides were liberated out via increasing temperature after complete depletion of the monomer in which a back-biting reaction was utilized as a ring-closure method. The living feature at the first ROP stage can be proved well by the controllable molecular weights ranging from 3.10 to 34.70 kDa and narrow molecular weight distributions of linear polylactides obtained after quenching the reaction. The final cyclic polylactides with molecular weights ( vs polystyrene) ranging from 2.50 to 16.10 kDa can be achieved too after the back-biting reaction of ring closure. Although a shoulder peak at the gel permeation chromatography profile appears when the ratio of monomer:initiator is high up to 100:1 or 200:1, this system is suitable for the controllable syntheses of cyclic polylactides with desirable modest molecular weights.
Keyphrases
  • mass spectrometry
  • heat shock protein
  • single molecule
  • pseudomonas aeruginosa
  • staphylococcus aureus
  • ms ms
  • high resolution
  • molecularly imprinted
  • biofilm formation
  • hyaluronic acid
  • carbon dioxide