Login / Signup

Hydroxyectoine protects Mn-depleted photosystem II against photoinhibition acting as a source of electrons.

Denis V YanykinM MalferrariS RapinoG VenturoliA Yu SemenovM D Mamedov
Published in: Photosynthesis research (2019)
In the present study, we have investigated the effect of hydroxyectoine (Ect-OH), a heterocyclic amino acid, on oxygen evolution in photosystem II (PS II) membrane fragments and on photoinhibition of Mn-depleted PS II (apo-WOC-PS II) preparations. The degree of photoinhibition of apo-WOC-PS II preparations was estimated by the loss of the capability of exogenous electron donor (sodium ascorbate) to restore the amplitude of light-induced changes of chlorophyll fluorescence yield (∆F). It was found that Ect-OH (i) stimulates the oxygen-evolving activity of PS II, (ii) accelerates the electron transfer from exogenous electron donors (K4[Fe(CN)6], DPC, TMPD, Fe2+, and Mn2+) to the reaction center of apo-WOC-PS II, (iii) enhances the protective effect of exogenous electron donors against donor-side photoinhibition of apo-WOC-PS II preparations. It is assumed that Ect-OH can serve as an artificial electron donor for apo-WOC-PS II, which does not directly interact with either the donor or acceptor side of the reaction center. We suggest that the protein conformation in the presence of Ect-OH, which affects the extent of hydration, becomes favorable for accepting electrons from exogenous donors. To our knowledge, this is the first study dealing with redox activity of Ect-OH towards photosynthetic pigment-protein complexes.
Keyphrases
  • electron transfer
  • amino acid
  • healthcare
  • squamous cell carcinoma
  • single molecule
  • mass spectrometry
  • molecular dynamics simulations
  • protein protein
  • binding protein
  • atomic force microscopy