(2×1) Reconstruction Mechanism of Rutile TiO 2 (011) Surface.
Menglei JiaJianfu ChenHai Feng WangPublished in: ACS nano (2023)
Understanding the reconstruction kinetics of solid surfaces involving an ensemble of atomic movements is practically important but challenging due to the complexity of high-dimensional potential energy surfaces. Herein, we develop a step-deciding technique incorporated with the nudged elastic band method, which enables multidirection pathway sampling and ensures the capture of a minimum energy path (MEP). Using this approach, the (2×1) reconstruction mechanism of a rutile-TiO 2 (011) surface, a classic and long-standing open problem in the fields of surface science and heterogeneous catalysis, is quantified, and the MEP is explicitly identified and explained. Following the least-bond-breaking rule, it gives a stepwise Ti-O bond cleavage mechanism with a collection of decoupled local structural relaxation modes at an overall barrier of 1.25 eV critically affected by initial Ti-O bond opening, which is much lower than the common synergy mechanism. Moreover, the adsorption-induced reconstruction is rationalized considering practical reaction conditions, where H atom adsorbate is shown to effectively stabilize the labile one-fold O 1c intermediate and promote the reconstruction kinetics. This work reveals the reconstruction mechanism regarding multiatom movements and provides a general method for the structural exploration of other complicated systems.