Login / Signup

Exploring Cu/Al cluster growth and reactivity: from embryonic building blocks to intermetalloid, open-shell superatoms.

Max SchützChristian GemelMaximilian MuhrChristian JandlSamia KahlalJean-Yves SaillardRoland A Fischer
Published in: Chemical science (2021)
Cluster growth reactions in the system [Cu5](Mes)5 + [Al4](Cp*)4 (Mes = mesitylene, Cp* = pentamethylcyclopentadiene) were explored and monitored by in situ LIFDI-MS and 1H-NMR. Feedback into experimental design allowed for an informed choice and precise adjustment of reaction conditions and led to isolation of the intermetallic cluster [Cu4Al4](Cp*)5(Mes) (1). Cluster 1 reacts with excess 3-hexyne to yield the triangular cluster [Cu2Al](Cp*)3 (2). The two embryonic [Cu4Al4](Cp*)5(Mes) and [Cu2Al](Cp*)3 clusters 1 and 2, respectively, were shown to be intermediates in the formation of an inseparable composite of the closely related clusters [Cu7Al6](Cp*)6 (3), [HCu7Al6](Cp*)6 (3H) and [Cu8Al6](Cp*)6 (4), which just differ by one Cu core atom. The radical nature of the open-shell superatomic [Cu7Al6](Cp*)6 cluster 3 is reflected in its reactivity towards addition of one Cu core atom leading to the closed shell superatom [Cu8Al6](Cp*)6 (4), and as well by its ability to undergo σ(C-H) and σ(Si-H) activation reactions of C6H5CH3 (toluene) and (TMS)3SiH (TMS = tris(trimethylsilyl)).
Keyphrases
  • aqueous solution
  • metal organic framework
  • magnetic resonance
  • multiple sclerosis
  • molecular dynamics
  • decision making