Login / Signup

The dimensionality of reasoning: Inductive and deductive inference can be explained by a single process.

Brett K HayesRachel G StephensJeremy NgoJohn C Dunn
Published in: Journal of experimental psychology. Learning, memory, and cognition (2018)
Three-experiments examined the number of qualitatively different processing dimensions needed to account for inductive and deductive reasoning. In each study, participants were presented with arguments that varied in logical validity and consistency with background knowledge (believability), and evaluated them according to deductive criteria (whether the conclusion was necessarily true given the premises) or inductive criteria (whether the conclusion was plausible given the premises). We examined factors including working memory load (Experiments 1 and 2), individual working memory capacity (Experiments 1 and 2), and decision time (Experiment 3), which according to dual-processing theories, modulate the contribution of heuristic and analytic processes to reasoning. A number of empirical dissociations were found. Argument validity affected deduction more than induction. Argument believability affected induction more than deduction. Lower working memory capacity reduced sensitivity to argument validity and increased sensitivity to argument believability, especially under induction instructions. Reduced decision time led to decreased sensitivity to argument validity. State-trace analyses of each experiment, however, found that only a single underlying dimension was required to explain patterns of inductive and deductive judgments. These results show that the dissociations, which have traditionally been seen as supporting dual-processing models of reasoning, are consistent with a single-process model that assumes a common evidentiary scale for induction and deduction. (PsycINFO Database Record
Keyphrases
  • working memory
  • transcranial direct current stimulation
  • attention deficit hyperactivity disorder
  • healthcare
  • decision making
  • single cell
  • risk assessment