Login / Signup

2-(Methylthio)ethyl Methacrylate: A Versatile Monomer for Stimuli Responsiveness and Polymerization-Induced Self-Assembly in the Presence of Air.

Sihao XuGervase NgJiangtao XuRhiannon P KuchelJonathan YeowCyrille A Boyer
Published in: ACS macro letters (2017)
In this communication, we investigate the photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of 2-(methylthio)ethyl methacrylate (MTEMA) using 5,10,15,20-tetraphenylporphine zinc (ZnTPP) as a photocatalyst under visible red light (λ max = 635 nm). Interestingly, the polymerization kinetics were not affected by the presence of air as near identical polymerization kinetics were observed for non-deoxygenated and deoxygenated systems, which is attributed to the singlet oxygen quenching ability of MTEMA. In both cases, well-defined polymers were obtained with good control over the molecular weight and molecular weight distribution (MWD). Furthermore, we have demonstrated that MTEMA can undergo the polymerization-induced self-assembly (PISA) process from a poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) macromolecular chain transfer agent (macro-CTA) to yield well-defined polymeric nanoparticles of various morphologies. These nanoparticles were rapidly disassembled after exposure to visible light due to the formation of singlet oxygen by the encapsulated ZnTPP and subsequent rapid oxidation of the thioether group.
Keyphrases